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PSK31 is one of the latest communications modes to 
capture the interest of hams worldwide. Its inherent 
ability to dig out low, near-inaudible signals is ideally 
suited for low power QRP enthusiasts. The PSK31 
digital modem engine, however, requires intense DSP 
processing that is only commonly available in PC sound 
card. Thus the PSK operator desiring portability for field 
operation is locked into using a laptop computer as a 
controller, which results in a cumbersome station. But 
there’s hope!  

This paper presents the design and construction of a 
standalone, battery-operated digital modem using a 
Microchip dsPIC microcontroller. The project includes a 
character display for transmit and receive text data, and 
a graphic display showing band spectrum and tuning 
indicator. Using GPL open source software, the modem 
can be homebrewed for less than $50 parts cost. When 
coupled with an SSB-capable transceiver or with a 
popular PSK-xx transceiver board from Small Wonder 
Labs, you too can have an effective portable PSK31 
station. 
 

 

 

 

 
Photo 1: NUE-PSK digital modem 

 

 
BACKGROUND 
 
PSK31 was introduced in 1998 to the ham technical community at large in RSGB’s RadCom magazine7. One was 
able to get on the air with this digital mode using a dedicated (expensive) DSP card, a crude DOS control program 
for entering/displaying messages, and interface cables for connection to the station SSB transceiver. Later, a brilliant 
PC program was developed (DigiPan12) that used a panoramic graphical display to show all signals occurring within 
a band segment and received messages on the PC screen. This was an astonishing improvement in the user interface 
for PSK31!  Later in 2001, NN1G designed a single board PSK31 transceiver kit (PSK-2016) that required no 
physical tuning, and when used with DigiPan running on the PC it made a quite compact PSK31 station. 
 
But even with these clever hardware and software designs, there is yet room for improvement. The sound card in a 
laptop or PC is still needed for the intense computation needs of the PSK algorithm. Even if one were to use a 
modern laptop for that computing power, taking an expensive and delicate computer to the field is a hair-raising 
experience. It is very hard to see the subtle spectral lines or the screen text data when viewing the laptop’s LCD 
display in the bright sunlight of a mountaintop QSO. So if your laptop’s battery lasts long enough to enjoy the joys 
of using PSK out in the open, and if you can see the laptop display in the bright sunlight, and if you feel like lugging 
that expensive laptop out into the harsh elements, you could indeed operate PSK31 in the field – but what an ordeal! 
 
The Path to a Design 
 
After operating for years with the challenges of using a laptop in the field, we decided that we wanted a PSK system 
that did not require the use of a PC in any form. We wanted something that would be very portable and compatible 
with QRP operations, providing many hours of operation from batteries. The project described here is a result of this 
desire … but it took a little time for advancing technology to pave the road. 
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The initial efforts to develop a “portable PSK” controller began about seven years ago with a reproduction of the 
original G3PLX approach described in RADCOM, but with a more current DSP card providing the horsepower for 
the PSK31 engine. The design also included a novel Morse user interface and tight coupling to the PSK-20 
transceiver. The project was documented in the QRP literature6 and presented at ham conferences, but ultimately it 
was too complex and fragile for wide-scale use. 
 
A more recent approach considered was based on the use of low power DDS (direct digital synthesis) chips for 
generating audio tones with the proper phase modulation. A multiplying DAC was used for modulating and shaping 
the amplitude of the tones, and a microcontroller was used to demodulate the PSK and display of the resulting 
characters. Analog filters were used for filtering the PSK signal ahead of digital processing in the microcontroller. 
The analog filters, however, proved to be too bulky and difficult to design when trying to use standard-value 
components.  Such filters also cannot provide the same level of performance as can be obtained with digital filters. 
Eventually this approach was also abandoned. 
 
Success At Last 
 
The approach that ultimately proved workable in every regard was one in which all processing is accomplished 
within a single microcontroller – one that is capable of performing the digital signal processing “number crunching” 
as well as handling all control chores. The newly-released dsPIC33 microcontroller from Microchip, Inc. is a 
delightfully-powerful combination of a conventional control processor with a DSP core for intense digital signal 
processing. Available in a small package with lots of I/O for controlling peripherals, this was just what the doctor 
ordered! 
 
It was perhaps fortuitous that others in our QRP club were having similar fantasies about the same time. K5JHF was 
exploring the dsPIC chip family and decided they would make a good basis for a number of projects of interest to 
the group. He kick-started things with the design of a dsPIC33 project board that included such peripherals as a 
Programmable Gain Amplifier (PGA), Digital to Analog Converter (DAC), EEPROM memory, Liquid Crystal 
Display (LCD), quadrature rotary encoder, keyboard and interfaces for a programmer. This was enough to give birth 
to what we now call the NUE-PSK31 controller. 
 

 
 

Photo 2a:  NUE-PSK digital modem circuit board assembly 
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Photo 2b:  NUE-PSK digital modem circuit prototype circuit board assembly.   
(Production pcb has red soldermask, silkscreened legends and plug-connectors for the displays.) 

 
 
NUE-PSK HARDWARE OVERVIEW 
 
As illustrated in the Appendix A: Schematic, U1 (dsPIC33F) is at the heart of the project design. This highly-
integrated dsPIC33F device employs a powerful 16-bit architecture that seamlessly integrates the control features of 
a Microcontroller (MCU) with the computational capabilities of a Digital Signal Processor (DSP). The resulting 
functionality is ideal for applications that rely on high-speed, repetitive computations, as well as control … just 
perfect for our PSK31 digital modem controller project! 
 
The dsPIC33F Central Processing Unit (CPU) has extensive mathematical processing capability with its DSP 
engine, dual 40-bit accumulators, hardware support for division operations, barrel shifter, 17 x 17 multiplier, large 
array of 16-bit working registers and wide variety of data addressing modes. Flexible and deterministic interrupt 
handling, coupled with a powerful array of peripherals, renders the dsPIC33F devices suitable for control 
applications. Further, Direct Memory Access (DMA) enables overhead-free transfer of data between several 
peripherals and a dedicated DMA RAM. Reliable, field programmable Flash program memory ensures scalability of 
applications that use the dsPIC33F family of devices. The specific device we used contains 128 KB of program flash 
memory, 16 KB of RAM, nine 16-bit timers, 16 general-purpose I/O pins, a pulse width modulation port, a port 
designed for reading quadrature encoders, two 16-channel ADCs, two UARTS, two SPI ports, two I2C ports, and 
comes in a 64-pin quad surface mount flat pack package. Whew, this is some chip. 
 
The initial prototype used the dsPIC to capture and decode signals from the PS2 Keyboard. This worked fine, 
except that on rare occasions, the dsPIC appeared to reset itself.  This had the unfortunate effect of losing current 
operating information such as the frequency and callsigns. After reviewing all information regarding the PS2 
keyboard, I decided that I didn’t like the way we were capturing scancodes from the keyboard. Data was being sent 
synchronously from the keyboard to the dsPIC, using a clock of only roughly known frequency (~10-20 kHz).  Each 
clock pulse caused an interrupt in the dsPIC, which then sampled the data stream. With the keyboard protocol 
specified by IBM many years ago, each scancode is sent using 11 clock pulses. In addition, each keystroke press and 
release results in three-or-more scancodes being generated. Consequently, each keystroke generated a minimum of 
33 interrupts.   
 
Apparently too much time was being wasted just processing keyboard interrupts and was the likely cause for 
occasional dsPIC resets. To solve this problem, I decided to use another small microcontroller to do most of the 
work handling the keyboard data. This second microcontroller U5 (Freescale 68MC908QY4) simply responds to 
the clock from the keyboard and gathers the bits received into a complete scancode (11 interrupts).  Once a scancode 
is completed, the ‘QY4 generates a strobe pulse to the dsPIC. Again, an interrupt in the dsPIC causes the dsPIC to 
capture an entire scancode on a set of port pins and place it in a buffer, or merely set a flag if the scancode is not a 
usable character. The ultimate effect of this division of responsibilities is that the dsPIC now responds to only 1/11th 
of the total number of keyboard interrupts that were present in the first attempt. 
 
Two LCD displays are used for the NUE-PSK31 interface: a character display LCD-1 and a graphics display 
LCD-2. LCD-1 is a four line by 20 character display used for received decoded text and as a monitor for text being 
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placed in the transmit queue. Text is displayed when in transmit and as macros are being played back. The cursor 
changes from steady to flashing when in transmit. Setup Menus are also displayed on the text display. LCD-2 is a 
144x32 pixel graphics display is used to display the FFT-generated spectrum of the audio passband.  The lowest six 
rows of the display are used for the tuning cursor. Since a 512-point FFT is used with a 8 kHz sampling rate, we 
have 256 points for a 4 kHz passband.  I chose to display only the frequency range from 500 Hz to 2500 Hz, using 
128 columns of the display. As there are 144 pixels across, the last sixteen columns of the display are not used.  
These might be used for a vector display in the future. Alternatively, we could use the additional 16 columns to 
display frequencies to 2750 Hz. The data and control lines for each display are buffered by level translators U2 and 
U3.  These are required to match the voltage levels between the 3.3-volt dsPIC and the 5-volt displays. 
 
The EEPROM U4 (24AA256) provides local storage for the macro and user-set variables entered during modem 
operation. This memory device is controlled by one of the SPI ports on the dsPIC. 
 
A computer-adjustable gain stage, the Programmable Gain Amplifier (U7, MCP6S21), brings the low level audio 
input stream coming from the SSB receiver to the 12-bit analog-to-digital converter on the MCU. Amplifier U8 
(MCP601) presents precisely one-half the Vdd voltage to the AC reference input of U7. 
 
Processed digital transmit audio tones are converted to a continuous analog stream by the 12-bit D-to-A converter 
U6 (MCP4922).  The audio level control R4 is used to adjust the appropriate modulation level to the input of the 
SSB transmitter, which is generally a one-time setting for a given transmitter being used. 
 
FET transistor Q1 (2N7000) buffers the Push-To-Talk control line sent to the transceiver, used to put the radio into 
transmit mode. 
 
The audio input, audio output and PTT control lines are brought off the pc board using an 8-pin DIN connector J3. 
This approach minimizes the number of connectors and cables normally used to connect a digital mode controller to 
an HF rig, as sometimes these cables can get mixed up and messy at the operating station. Further, when the NUE-
PSK31 controller is used with a dedicated HF rig – e.g., a Yeasu FT-817 or a PSK-20 transceiver card – the other 
end of the cable may also be consolidated to a single multi-pin plug, thus providing a neat and elegant interconnect 
with the radio. 
 
The design of the power supply accommodates multiple needs for this portable project. Since the NUE-PSK31 only 
requires approximately 200 ma during normal operation, portable power can be handled by using a conventional or 
heavy duty 9V battery. The digital modem may instead be externally powered by applying 12V power through J1. 
Diodes D7, D8 and D9 protect the battery when external power is applied. Provisions are also provided through R7 
to trickle charge the battery in the event that common NiMH cells area used. In this case, when P5 is jumpered, the 
modem is conveniently charged over night while connected to a 12V supply on the bench. 
 
The entire NUE-PSK31 project is assembled using a single 2.5” x 3.5” pc board – quite an improvement over the 
Portable PSK project done previously, as well as over the prototype hardware for this current design, as we’ll show 
in the next section. The pc board holds all components – both LCDs, rotary encoder, power connector and radio 
interface connect – and may be assembled into your favorite homebrewed enclosure. The design was dimensioned 
for a nicely-sized hand-held plastic case from Pac-Tec, as shown in the photos of the unit. This enclosure also has a 
conveniently-accessible compartment on the back side that houses the 9V battery.  
 
HARDWARE CONSTRUCTION 
 
Before ending up with a neat and compact pc board, the NUE-PSK31 design started out as a rather large and 
sprawling prototype hardware layout. This is normally the case when complex projects are born as it allows the 
designers to try out different approaches and components, while also allowing them to easily get in to monitor and 
debug the design. 
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Photo 3: NUE-PSK31 Prototype System 

Clockwise from upper right:  NUE-SK31 displays and proto hardware,  
PC keyboard, rotary encoder “dial”, FT-817 transceiver, and power supply. 

 
The prototype design was built using a proto-board with plated-through holes on 0.1” centers to facilitate mounting 
through-hole components. The surface mount dsPIC microcontroller is mounted on a “Schmart-Board”2. This 
particular board is designed to permit attaching 32-to-100 pin SMT devices and has 0.65mm lead separation (pitch). 
Schmart Boards are available in several pitches and pin counts to accommodate prototyping of a range of SMT 
controllers. Header pins and sockets are used to connect the board to the main prototype board. The photo below 
shows how the headers and mating sockets interconnect on the prototype. Point-to-point circuit connections were 
accomplished using 30-gauge Kynar wire, and a hand-stripping tool was use to strip the ends prior to soldering to 
the socket/connector pins. Thus the prototype was rather easily assembled and the result was fairly solid when 
complete. 
 

 
Photo 4: NUE-PSK31 Prototype 

Multiple cabling and programmer connection (lower right) allow 
convenient access to the electronics during design shake down. 

 
 
Development Tools & Getting Started in Software 
 
While Microchip is well known in the ham community, few of us had experience with this new family of PIC chips. 
Microchip apparently foresaw this situation and they have provided an amazing number of application notes, 
specifications and guidance for designers to use in quickly coming up to speed.  
 
Further, even the best chip on earth would be crippled without a good set of software development tools; but 
Microchip again came to the rescue with a C compiler and an extensive DSP library that proved invaluable to us in 
developing the project.  Both of these were available for free, so what more could we ask! 
 
To program the dsPIC, we discovered that the inexpensive (~$25) PICkit2 programmer5 is entirely adequate for the 
job. In-Circuit-Debugging is not readily achieved with the free versions of the tools, and we seemed to manage 
without it. 
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The final essential aspect in enabling this project was a design reference for the PSK31 modem algorithm, provided 
by Moe Wheatley, AE4JY. His PSKcore documentation and C++ source code3 was professionally done and 
graciously placed into the public domain, thus available to us. We concluded that it would be a straightforward 
conversion to C language so we could use our free compiler and have it work on the dsPIC33 … and we relied 
heavily on it. 
 

PSK MODULATION-DEMODULATION OVERVIEW 
 
We will not go into great depth concerning the theory and operation of PSK31, but one can refer to the reference 
material17 and Wheatley’s design and technical specification3 for additional detail. So in this paper we’ll first 
overview the PSK31 encoding scheme, followed by the more demanding decoding scheme. 
 
Note that while the NUE-PSK31 project focuses on the generation and decoding of PSK31, it is generally known 
that PSK31 is merely one-of-many modulation techniques within the “phase shift keying” family of communication. 
PSK31 operates at a 31.25 baud (bits/second), while other speeds may be achieved using variations to the software 
algorithm. PSK is perhaps more accurately termed BPSK, for bi-phase shift keying, whereby two distinct phase 
states separated by 180 degrees are used to convey the information. Four states may also be encoded/decoded, as is 
done with QPSK (quad-phase shift keying), in order to provide higher speeds and greater error correction ability. 
 
So even though we will concentrate on the PSK31 mode, understand that some of these other modes can also be 
achieved with the same hardware and software of NUE-PSK31. 
 
 
Modulation (PSK31 Encoding) 
 
The PSK31 modulation algorithm is quite straightforward and could even be implemented on a conventional PIC-
like device (i.e., one without a DSP core). This was done in several projects over the years within the QRP 
community; see, for example, the PSK31 Beacon project18 from the NJQRP Club. 
 

 
 

Figure 1: PSK Modulation Block Diagram 
The Encoding Steps, in summary: 

1) Vericode encoding of the input text character stream coming from the keyboard to create an optimized bit-
representation of the text; 

2) BPSK serialization of the vericode character to create the proper sequence of phase changes in the 
waveform based on the bits in the vericode; and 

3) Form the wave shape from the combination of phase changes coming from the serializer, being careful to 
reduce the power level to zero when the 90-degree phase changes occur, thus reducing the bandwidth of the 
transmitted PSK signal. 

 
These steps are all performed in the dsPIC processor, per the functional block diagram shown next in Figure 2. As 
ASCII characters are produced by a keyboard, they are first converted to Vericode-encoded characters using a 
lookup table. A string of binary bits, the length of which is variable (hence-“Vericode”), is generated from the table.  
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The strings of bits are then used to drive a differential phase state machine which uses predefined tables to modulate 
the amplitude of the quadrature outputs (sine and cosine waveforms) of a numerically-controlled oscillator NCO.  
The sine and cosine numeric waveforms are derived from a lookup table to produce the NCO carrier.   
 
The two quadrature oscillator signals are multiplied by amplitude functions as determined by the phase state 
machine, and the resulting channels of data are added to produce a digital version of either a BPSK or QPSK signal. 
Although a simpler scheme could be used for BPSK alone, this method has the advantage that it can also generate 
QPSK. This digital stream of data is then sent to a digital-to-analog converter (DAC) to produce an audio carrier 
with BPSK/QPSK modulation. The output of the DAC is sent to the audio input of the SSB transceiver for 
conversion to RF. 
 
 
Demodulation (PSK Decoding) 
 
Whereas the encoding process described above is pretty straightforward, the PSK decoding algorithm is 
significantly more complex and computationally demanding. It is for this reason that there have been so few 
standalone PSK demodulator projects in the ham homebrewing community. The PC sound card is clearly the easiest 
way to provide the intense DSP processing needed for decoding PSK – hence PC-based PSK31 programs abound. 
 
This is where the standalone (PC-less) NUE-PSK project excels – it is able to independently handle the complex 
PSK decoding algorithm in real time, thus providing the first truly portable digital modem for hobby use. 
 
Refer to this PSK Demodulation block diagram as we walk through the Decoding Steps next. 
 

 
 

Figure 2: PSK Demodulation Block Diagram 
 
The Decoding Steps, in summary: 

1) Receiver audio is sampled at 8 kHz, creating a digital floating point representation of the audio stream. 
2)  Data is fed into a 512 point FFT for display, tuning and visual signal monitoring purposes. 
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3)  The audio floating point data stream is converted to a baseband signal centered on the user’s frequency.  
The NCO generates sine and cosine frequencies and multiplies them with the audio stream to produce I (in 
phase) and Q (quadrature phase) data streams. 

4)  The I & Q data streams are decimated by 16 to reduce the sample rate to 16 times the signal BW. The final 
sampling rate then is 8000/15 = 500 Hz. 

5)  A 65-tap “matched bit” FIR filter is applied to produce a magnitude response for best SNR for data 
extraction, and to minimize Inter-Symbol Interference (ISI) presented in the signal path and in the receive 
filter. 

6)  AFC is performed to lock on the incoming signal frequency by using another FIR with BW = 31.25 Hz. 
7)  AGC is accomplished by computing the average signal magnitude from the I & Q data streams.  IIR filters 

are selected to provide either slow decay or fast attack settings. 
8)  Frequency error detection is done by scanning the FFT data within the capture range while looking for the 

nearest peak. A wide range AFC algorithm is also performed by calculating the slope and moving the NCO 
to place the peak at the center. 

9) Symbol synchronization is done by finding the center of each symbol in order to sample at the optimum 
time. There are 16 samples per symbol at 500 Hz intervals, so each sample energy is IIR-filtered and stored 
in an array. The array elements with the most energy are selected as the center of the data symbol at each 
symbol period of 32 ms. 

10) Squelching is performed by histogramming the incoming signals and considering the spread (difference 
angle, or atan (Q/I) between each sample) around 0 degrees and 180 degrees as a measure of signal quality. 
The narrower the spread, the stronger and more coherent the signal. 

11) Symbol decoding is the last step, whereby we convert the I and Q signals back to two possible symbols by 
using the difference angle (<90 deg = 1, >90 deg = 0). The resultant symbols are shifted into a register until 
the inter-character mark of 2 or more zeros is found. The shift register is then used as an index into a 
reverse-Vericode table containing the originally transmitted characters. 

 
 

SOFTWARE OVERVIEW 
 
Most of the PSK modulator and demodulator code is derived from PSKcore. Although his code was written in C++, 
and was developed for use on a PC, it was not too difficult to convert it for compilation under C, for which there is a 
free compiler from Microchip.  As part of our QRP group project, John Fisher, K5JHF provided much of the initial 
software for the project. His code includes most of the initialization code, a keyboard handler, a basic LCD driver, 
I2C and SPI drivers, an interface for EEPROM storage, and ADC and DAC interfaces. I was able to develop the 
remaining code even though I consider myself a novice C programmer. 
 
PSK31 Decoder Processing 
 
Receiver audio from an SSB transceiver is presented to the NUE-PSK31 circuits.  It is first processed by PGA 
whose gain is controlled by the dsPIC via an SPI (Serial Peripheral Interface) connection.  The output of the PGA is 
then sampled by an internal 12-bit ADC on the dsPIC.   
 
Timer1 of the dsPIC provides all critical timing. The timer is set to interrupt the software program every 125 
microseconds, at which interval the ADC reads and converts the incoming audio data, corresponding to a sample 
rate of 8000 samples per second. The ADC samples are captured into a 2048 word buffer, and once the buffer is half 
full a flag is set to inform the system that data is available for processing. Only half of the buffer is processed at a 
time – this ping-pong buffering technique allows continuous data processing to be accomplished while the other half 
is being filled in real time. 
 
The main routine of the program is an endless loop in which a number of flags are tested. When one is found to be 
set when queried, execution of that specific function is triggered. For example, if the ProcPSK flag is checked and 
found to be set, a block of data is then processed. Each sample in the buffer is multiplied by a quadrature NCO, 
producing I and Q signals. Each of these is then passed two times through a 35-tap decimate-by-4 FIR filter. This 
provides I and Q signals that are now sampled at 500 samples per second.  (If in PSK63 mode, the second filter bank 
will decimate-by-2, providing 1000 samples per second.) While the block of 1024 samples is being processed, the 
second half of the buffer is being filled with new samples under control of the Timer1 interrupts. Processing then 
ping-pongs between the two halves of the buffer.  Using this technique we never write new data to the part of the 
buffer that is being processed. 
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The next step is to split each of the I and Q channels into two paths. One is for the processing of the bits and one 
path is for processing of frequency data, producing now four channels of data. Each of these channels is filtered by a 
65-tap FIR. The I and Q bit channels should be optimized to minimize intersymbol interference, while the I and Q 
frequency channels should be optimized for fast response of the Automatic Frequency Control (AFC) loop. All of 
the FIR filters have responses as specified by AE4JY. Instead of using the PSKcore filtering code, I am using FIR 
filters from the Microchip DSP library, as these software filters are designed to take into account the special 
hardware features of the dsPIC. However, the results may be shown to be the same; that is, they have identical 
frequency responses.   
 
The bit channels are processed as described in the PSKcore specification to determine the proper time for 
determination of the phase changes that are employed in PSK. Since the bit rate of PSK31 is 31.25Hz, each bit 
extends for 32 milliseconds in time. We have a sample rate of 500Hz at this stage of processing, so there are 16 
samples for each bit. The point in time for proper synchronization of the phase detection process is based on an 
analysis of the average energy in each of the 16 samples when averaged over several bits. Without going into the 
mathematical details, suffice it to say that the maximum energy always occurs at the boundary between successive 
bits. This fact is used to establish synchronization in the bit detector. 
 
I used the free WinFIRDesigner software, with parameters obtained from the AE4JY code to calculate the FIR filter 
coefficients. As noted above, the frequency responses obtained with these coefficients are identical to those 
published by AE4JY. 
 
A processing block takes the four filtered signals and proceeds to: 

1) obtain a digital AGC control;  
2) calculate frequency errors; 
3) correct the Numerically Controlled Local Oscillator; 
4) determine bit boundaries; 
5)   determine whether a 1 or a 0 is being received; 
6)   collect the decoded 1’s and 0’s into a Vericode pattern; 
7)   convert the Vericode pattern into ASCII characters; and finally 
8)   display the resulting characters.   

 
The PSKcore routines were used to perform AGC, bit synchronization, character decoding, etc. In addition, I added 
code that will perform a 512 point FFT on the samples (8k sampling rate) that are provided to the FIR filters. The 
processed FFT is then converted to magnitude, and then to a logarithmic scale. The 500-to-2500 Hz portion of the 
spectrum is displayed on a 144x32 pixel graphics LCD. This display is essential for tuning. More about this later. 
 
The final output of the demodulator processing is a decoded ASCII character. These decoded characters are 
displayed on a 20-character by 4-line display. The display driver includes a line buffer so that once a line of 
characters is filled, it is scrolled up and new characters are inserted at the beginning of the second line. This 
approach was chosen so that printed characters remain fixed longer for easy reading, as opposed to all characters 
being in constant motion (scrolling horizontally) when data is being received. 
 
PSK31 Encoder Processing 
 
As mentioned earlier, the encoding process is considerably less-intense as compared to the decoder operations. 
ASCII characters are accepted from the keyboard, converted to Vericode characters, and the binary string 
represented by the Vericode is used to modulate the phase and amplitude of an audio carrier – the PSK audio signal. 
 
Although PSKcore code creates a block of data to be sent to the PC’s soundcard, I chose to generate a single sample 
of output signal for each and every 125 microsecond timer interrupt. This minimizes data memory requirements. 
The method of generating the desired phase and amplitude modulation is that developed by AE4JY with the 
exception that the tables used reside in program memory instead of data memory. The use of these tables eliminates 
the time consuming calculation of sine and cosine signal components. The choice of placing these tables in program 
memory was made because I had plenty of program memory with the dsPIC, but not a lot of spare data memory. The 
calculated data samples are then scaled for output to a 12-bit DAC. The DAC output, after capacitive coupling, is 
then routed to the audio input of a SSB transceiver. 
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As each interrupt occurs the code steps through the tables, providing modulation values for the I and Q signals, 
resulting in either BPSK or QPSK phase modulation.  The modulated I and Q signals are added together prior to the 
DAC. 
 
 
USING THE NUE-PSK31 DIGITAL MODEM 
 
To enable easy operation of the NUE-PSK31 digital modem, numerous hot keys (short cuts) have been incorporated 
into the software. For example, these features make it easy to record macros, and change various set-up features like 
mode, AFC On/Off, CW Id, etc. The EEPROM memory is used for storage of setup information and macros so that 
they will be retained when power is removed from the modem. The following is a list of hot keys that have been 
implemented: 
 

� Play Macros: Function Keys F1 to F7 
� Record Macros: Ctrl-Fn Initiates recording.  Enter keystrokes.  When finished, Press F9 
� Erase Macros: Alt-Fn to delete Macro associated with Fn 
� F8 toggles TUNE mode.  May be accessed only in RX or TX. (Not in Setup, or Macro Recording) 
� F11 displays the first few bytes stored in EEPROM 
� F12 toggles between RX and TX (again, not in Setup, or Macro Recording) 
� F10 displays the main Setup Screen. (Accessible only in RX mode) 
� A numeric selection from the Main Menu, selects a submenu, which is then displayed on the LCD. Another 

numeric selection activates your selected parameter 
� Ctrl-K clears the keyboard buffer (in case errors made) before entering callsigns 
� Ctrl-M saves keyboard entries into a fixed location in EEPROM (for recording your callsign, for use in 

Macros) 
� Ctrl-T saves keyboard entries into a RAM location (for recording the other station’s callsign—also for use 

in Macros) 
� Alt-M enters a control character into a Macro, that when played back, will insert your callsign 
� Alt-T does the same as Alt-M, but it forces the entry of the other station’s recorded callsign into the macro 

playback 
� Ctrl-F saves the current frequency into EEPROM so that it can be restored at the next power-up 
� Alt-F retrieves the saved frequency and makes it the current frequency 
� Ctrl-Tab displays the current frequency (audio) on the character LCD 

 
A few parameters are selectable by hot keys: 
 

� Ctrl-A  Enable AFC 
� Alt-A  Disable AFC 
� PgUp  Increase PGA gain 
� PgDn  Decrease PGA gain 

 
� Ctrl-L clears the Character LCD 
� Ctrl-B clears the internal buffers 

 
� Ctrl-Q inserts a TX-OFF control character in the TX buffer, or Macro 

 
Tuning 
 
Changing the operating frequency is done by one of two methods. The first is by using the rotary encoder dial to 
change frequency in either of two increments (25 or 50Hz, selectable from the menus). As the frequency is adjusted, 
the cursor moves on the Spectral Display LCD. The lock sequence is initiated by aligning the cursor with a signal 
peak and pressing the pushbutton on the rotary encoder. 
 
The second way of tuning is to use the keyboard. The right and left arrow keys increase and decrease the frequency 
by either 25 or 50Hz, as selected by a menu option. The up and down arrow keys increase or decrease the frequency 
by 100 or 250Hz. When the cursor is approximately aligned with the spectral peak of the desired signal, pressing the 
END key initiates the lock sequence. 
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Use of the encoder pushbutton or the keyboard END key is optional. A timer has been included so that a lack of 
frequency change after a certain time interval (presently set for 1 second) causes automatic initiation of the lock 
sequence. 
 
 

 
 

Photo 5: NUE-PSK System 
Graphics LCD (upper display) showing received spectrum with a PSK31 signal  

prominently displayed, and text display (lower LCD) showing the range of characters supported.  
 
 
FUTURE ENHANCEMENTS 
 
Consideration of software improvements and additional capabilities are already in the works. 
 

1. A radar-like vector scope would be a very convenient tuning aid to help the user to see the current spread of 
the PSK31 tones and thereby have an indication of the incoming signal quality. This vector scope can fit 
nicely on the right side of the graphics display. 

 
2. Depending on the cost of using a larger graphics display, it would make sense to eliminate the character 

display and also use the graphics display to show the characters from the typing buffer, transmit buffer and 
receiver buffer. The ability to display stable text (for easy reading) along the bottom of the single graphic 
LCD will be another consideration for making this change. 

 
3. Updating the graphics LCD to display current spectral information consumes a considerable portion of the 

total processing time in the dsPIC. If all LCD display routines were off-loaded to a small microcontroller, 
which we already have in the system, there would be more time available for processing PSK63 and 
perhaps other digital modes. 

 
4. Additional dynamic range would be possible if an external ADC with 16 to 24 bits were to be employed. 

The Austin QRP group is currently evaluating ADCs and codecs that might be used in this application. 
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CONCLUSIONS 
 
The NUE-PSK31 digital modem is used regularly by both authors, has seen some intense operation during some 
QRP contests this year, and was recently demonstrated at the Austin Summerfest Convention. In short, it is a great 
pleasure to be able to use the PSK31 digital mode out in the field with such little reliance on a conventional PC or 
laptop. All the benefits previously mentioned are truly helping in enjoying the overall communications experience. 
 
The project is easy to homebrew, with all software being freely available (under the GPL) and with the use of 
commonly-available components. To ease the effort of implementing the NUE-PSK31 digital modem, the American 
QRP Club has graciously agreed to kit up the parts, pcb and enclosure for a very reasonable price1. 
 
We are indebted to the pioneering efforts of others before us here in the field of PSK31 (see the extended Reference 
section), and especially to AE4JY. Without Moe’s groundbreaking work in creating and documenting PSKcore, the 
process of getting the PSK31 algorithms working in such a revolutionary microcontroller as the dsPIC would have 
been much longer in coming. 
 
We hope you enjoy building up your own NUE-PSK31 digital modem.  Let us know how it works out and we’ll be 
looking for you on the air! 
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 PARTS LIST:  NUE-PSK31 

 
Designator Part Qty Description

U1 dsPIC33FJ128MC706 1 Microchip DSC, 64-pin QFP
U5 MC68HC908QY4 1 Freescale microcontroller, DIP-16
U7 MCP6S21 1 Programmable Gain Amplifier
U8 MCP601 1 Op Amp
U6 MCP4922 1 Dual-DAC  MCP4922
U4 24AA256 1 Microchip EEPROM
Q1 2N7000 1 NFET

U2, U3 TXB0108 2 Octal Level Shifting Buffer

U10 LP2950 1 3.3V regulator (TO-92)
U9 78L05 1 5V regulator (TO-92)

LCD-1 4x20 character LCD 1 Primary character display
LCD-2 144 X 32 graphics LCD 1 Crystalfontz CFAG14432A-YYH-TT

P1, P2 16 pin pinheader 2 Pinheader, 2x8 (cut 4 from 2x36 strip)
P5 2 pin header 1 Pinheader, 2x1 (cut 36 from 2x36 strip)
P4 8-pin Mini-DIN plug 1 8-pin Mini-DIN plug
J2 6-pin Mini-DIN 1 6-pin Mini-DIN
J3 8-pin Mini-DIN 1 8-pin Mini-DIN
J1 DC power connector 1 DC power connector

X1 crystal 1 crystal

R8, R9, R16 1k ohm resistors 3 resistor
R5, R6 10k ohm resistors 2 resistor

R4 1k ohm potentiometer 1 resistor
R7, R12, R15 47, 1/2W 3 resistor

R11, R14 330 ohm 2 resistor
R10, R13 4.3K ohm 2 resistor

C6 10uF Tantalum 1 capacitor
C9, C13, C15, 1uF ceramic 3 capacitor

C1, C2, C3, C10, 
C12, C14, C16 0.1uF  ceramic 11 capacitor

C7, C8 22pF 2 capacitor

IC socket 1 16-pin DIP IC socket

D7, D8, D9 schottky diode 3 Diode, Schottky, 1N5817, DO-41
D10, D11 schottky diode 2 Diode, Schottky, 1N5711, SMT

ENC Rotary Encoder /w PB 1 rotary encoder

PCB 1
Overlay Label 1
Enclosure 1  

 


